Safety Assessment of Nanomaterials

Dr. Robert Landsiedel Experimental Toxicology and Ecology, BASF SE, Ludwigshafen

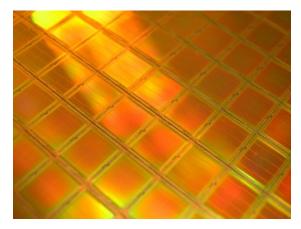
> Nano Innovation 21st September 2016, Rome, Italy

EUROPEAN CENTRE FOR ECOTOXICOLOGY AND TOXICOLOGY OF CHEMICALS

www.ecetoc.org

EU COMMISSION RECOMMENDATION on the definition of nanomaterial

"Nanomaterial" means a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm - 100 nm.


The smaller group of relevant materials: Engineered nanoparticles

Resistence

Acceleration

Polishing

Resistence

BASF create chemistry

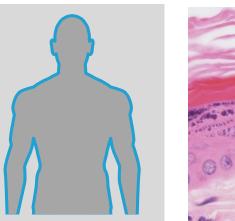
The larger group: conventional products of sub-micron size with a tail of primary particles below 100 nm

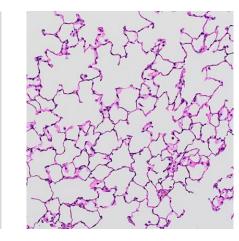
Safety concerns with nanomaterials

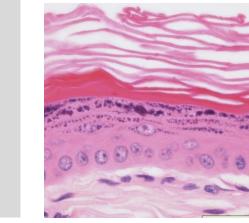
Nanoparticles raise questions:

- Large surface \rightarrow higher reactivity?
- Small size \rightarrow defeat barriers?
- Life-cycle-dependent nanostructure?

Unique properties?


Savolainen, Kai, et al. "Nanosafety in Europe 2015–2025: towards safe and sustainable nanomaterials and nanotechnology innovations.", Helsinki (2013). ISBN 978-952-261-310-3 www.veronananomedicine.it/wordpress/wp-content/uploads/2013/06/nanosafety_2015-2025.pdf

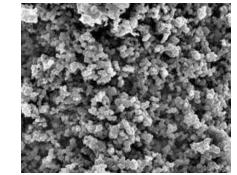

BASF:

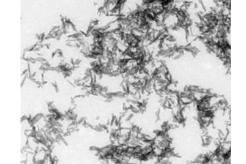

- Nano safety research since 2004
- More than 150 studies on nanomaterial toxicity
- More than 25 co-operations and research projects

More than 50 scientific publications

Use of nanomaterials

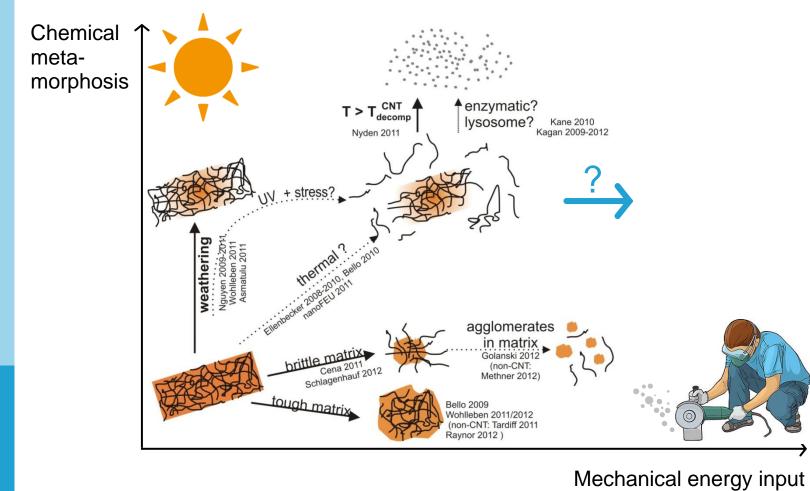
ober tires


in cosmetic emulsions



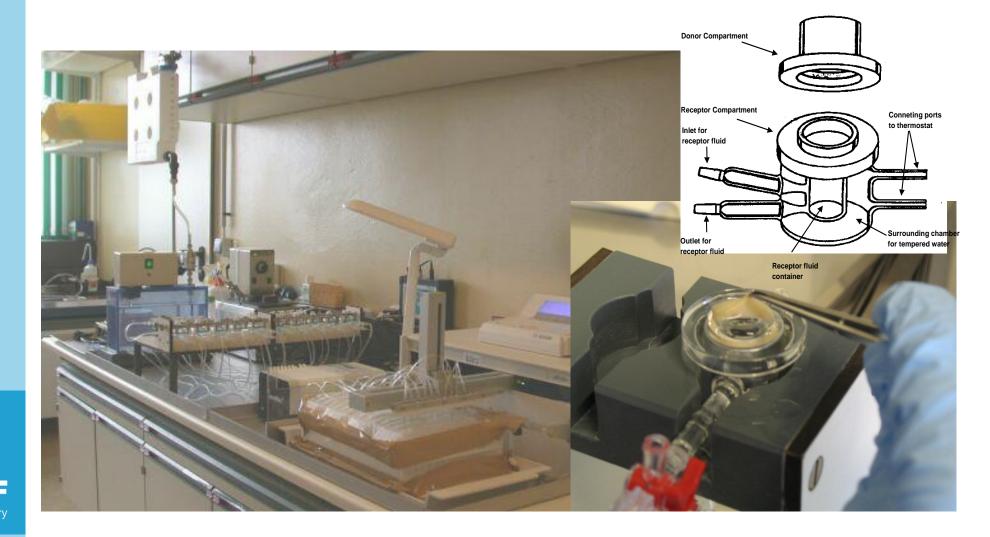
in car coatings

in concrete



We create chemistry

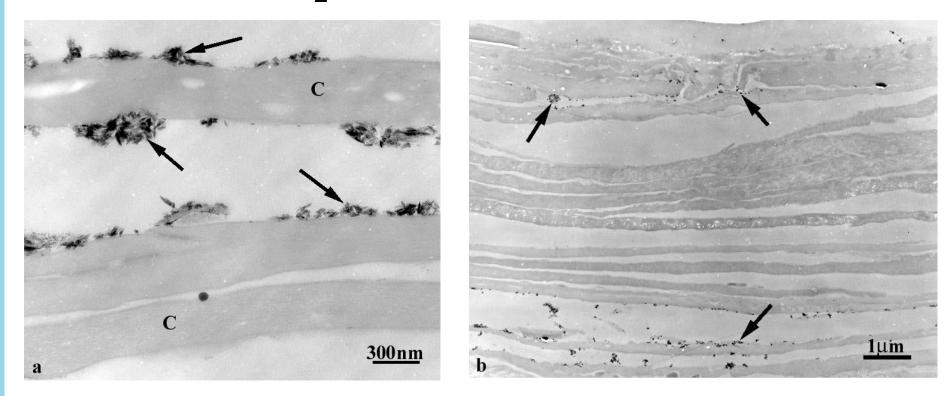
Release of nanomaterials



Hirth, Sabine, et al. J Nanopart Res 15.4 (2013): 1-15 Wohlleben, Wendel, et al. Nanoscale 5.1 (2013): 369-380.

Uptake of nanomaterials Dermal absorption of nano ZnO

Dermal Penetration Studies *in vitro*



Sunburned Skin

Skin Treated -TiO₂ CM630 - 24 Hrs

(a) Normal skin – 9 layers

(b) UVB - 17 layers

Effects of Nanomaterials

Inhalation Studies

Short-term inhalation studies (STIS)

Short Term Inhalation Study (STIS)

Study day

nano SAFE nano are

······	Study phase	Х	х	Х	х	х	R	R	R	R	R
ale Wistar rats	Examinations					Е			L		E+l

- X: Head-nose exposure to aerosols for 6 hours per day on 5 consecutive days
- R: Recovery period
- L: Lavage

We create chemistry

E: Examinations

- Organ burden (lung, mediastinal lymph nodes, liver, kidney, spleen and basal brain with olfactory bulb)
- Distribution and translocation
- Particle size distribution within the lung
- Histology of selected organs, cell proliferation / apoptosis

8 9-27 28

Cytological and biochemical parameters in the broncho alveolar lavage fluid

13

	Target concentration (mg/m ³)	Physico-chemical Data	NOAEC / LOAEC	Clinical Pathology	Pathology	
SiO ₂	0.5; 2.5; 10	Primary particle size: 15 nm BET surface: 200 m²/g Morphology: amorphous	NOAEC: 10 mg/m ³	no ad∨erse finding	no adverse finding	
SiO ₂ coated	0.5; 2; 10	Coating: polycarboxylate	NOAEC: 10 mg/m ³ (local) LOAEC: 0.5 mg/m³ (sys)	no ad∨erse finding	no ad∨erse finding	
TiO ₂ P25	2; 10; 50	Primary particle size: 21 nm BET surface: 51.1m²/g Purity: 99.5 %	NOAEC: < 2 mg/m³	↑ BALF protein conc. ↑ activity of LDH, GGT, NAD, ALT ↑ neutrophil counts	histiocytosis	
TiO ₂ coated	0.5; 2.5; 10	Purity: 82% TiO ₂ Impuity: 10 % Al(OH) _{3,} 1.6 % Si	NOAEC: 0.5 mg/m ³	↑ BALF protein conc. ↑ activity of LDH, GGT, NAD, ALT ↑ neutrophil counts	no adverse finding	
CeO ₂	0.5; 2.5; 10	Primary particle size: 70 nm BET surface: 26.06 m²/g Morphology: irregular spherical	NOAEC: 0.5 mg/m ³	↑ BALF protein conc. ↑ activity of LDH, GGT, NAD, ALT ↑ neutrophil counts	histocytosis, mild inflammation	
CeO ₂ doted	0.5; 2; 10	Primary particle size: 40 nm BET surface: 46 m²/g Morphology: cerianite, cubic Purity: 89 %	LOAEC: 0.5 mg/m ³	↑ BALF protein conc. ↑ activity of LDH, GGT, NAD, ALT ↑ neutrophil counts	histocytosis, mild inflammation	
ZrO ₂	0.5; 2.5; 10	Primary particle size: 70 nm BET surface: 25 m²/g	NOAEC: 10 mg/m ³	no ad∨erse finding	no ad∨erse finding	
BaSO ₄	2; 10; 50	Primary particle size: 37,5 nm BET surface: 41,4 m²/g Morphology: crystalline, orthorhombic Purity: 93.8 %	NOAEC: 50 mg/m ³	no adverse finding	no ad∨erse finding	
ZnO	0.5; 2.5; 12.5	Particle size range: 70-110 nm BET surface: 12 m ² /g Purity: 78.2 %	LOAEC: 0.55 mg/m ³	↑ BALF protein conc. ↑ activity of LDH, GGT, NAD, ALT ↑↑ neutrophil counts	minimal to moderate multifocal necrosis of the olfactory epithelium	
СВ	0.5; 2.5; 10	Particle size range: 11-68 nm BET surface: 40 m ² /g Purity: > 99%	NOAEC: 10 mg/m ³	no adverse finding	no adverse finding	
MWCNT 1	2; 8; 32	Diameter: 9.5 nm Length: 1.5 μm Impurities: 10 % (Al, Co, Fe)	NOAEC: < 2.4 mg/m³	↑ BALF protein conc. ↑ activity of LDH, GGT, NAD, ALT ↑↑ neutrophil counts	inflammation/ minimal to mild multifocal granulomatous inflammation	
MWCNT 2	0.1; 0.5; 2.5	Diameter: 10-15 nm Length: 0.1-10 µm Impurities: 8.6 % (AI, Fe)	NOAEC: 0.1 mg/m ³ LOAEL: 0.5 mg/m ³	↑ BALF protein conc. ↑ activity of LDH, GGT, NAD, ALT ↑↑ neutrophil counts	inflammation	
micro-Quarz DQ 12	100	BET surface: 5.9 m²/g	-	↑ BALF protein conc. ↑ activity of LDH, GGT, NAD, ALT ↑↑ neutrophil counts	diffuse histocytosis / significantly increased apoptosis / granulomatous inflammation	
micro-TiO ₂	250	BET surface: 6 m²/g	-	↑ BALF protein conc. ↑ activity of LDH, GGT, NAD, ALT ↑ neutrophil counts	diffuse histocytosis / increased apoptosis	
micro-ZnO	12.5	BET surface: 5.6 m²/g Purity: > 99.9 %	-	↑ BALF protein conc. ↑ activity of LDH, GGT, NAD, ALT ↑↑ neutrophil counts	minimal to moderate multifocal necrosis of the olfactory epithelium	

We create chemistry

ADVANCED MATERIALS

Landsiedel Robert *et al.* (2010) "Testing Metal-Oxide Nanomaterials for Human Safety" Advanced Materials, 22:2602-2627.

Landsiedel, Robert, et al. (2014) "Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials." *Particle and fibre toxicology* 11.1: 16.

Ma-Hock, Lan, et al. (2013) "Comparative inhalation toxicity of multiwall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black." *Particle and fibre toxicology* 10.1: 23.

Ranking of nanomaterials according to their toxic potency in the STIS

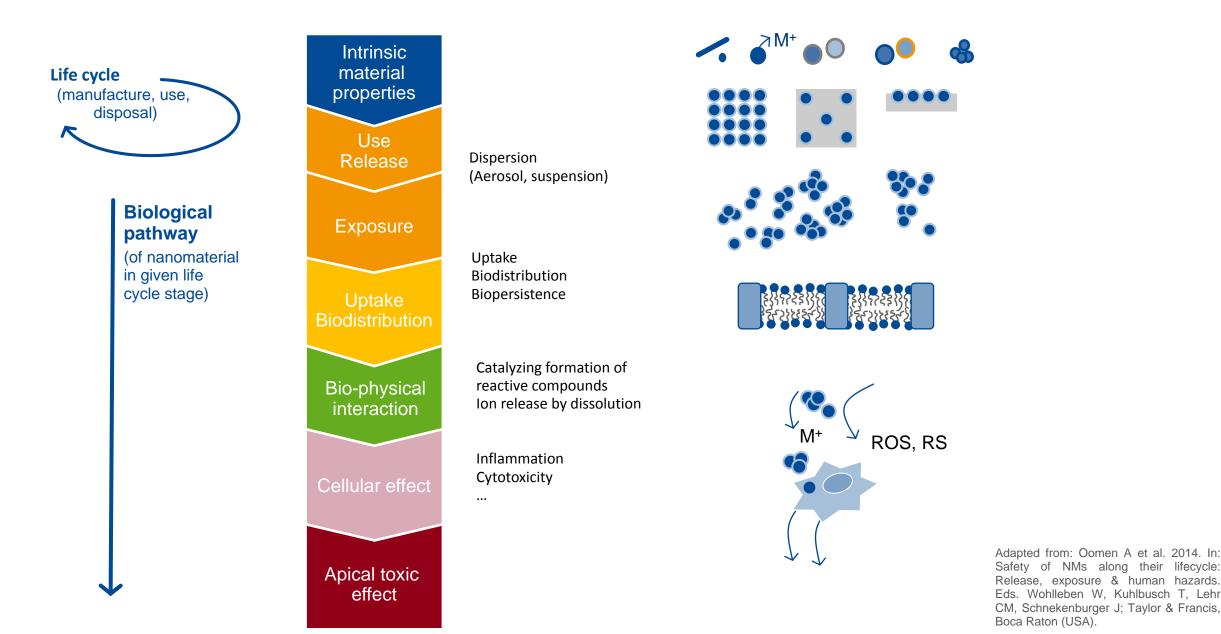
No adverse effects observed up to the highest concentration tested, i.e. 10-50 mg/m³

BaSO₄, SiO₂.PEG, SiO₂.phosphate , SiO₂.amino, nano.ZrO₂, ZrO₂.TODA, ZrO₂.acrylate, SiO₂.acrylate (no lung effects up to 10 mg/m³; however systemic NOEC at 0.5 mg/m³), Graphite nanoplatelets , low surface area Carbon black

Adverse effects observed at 10 mg/m³

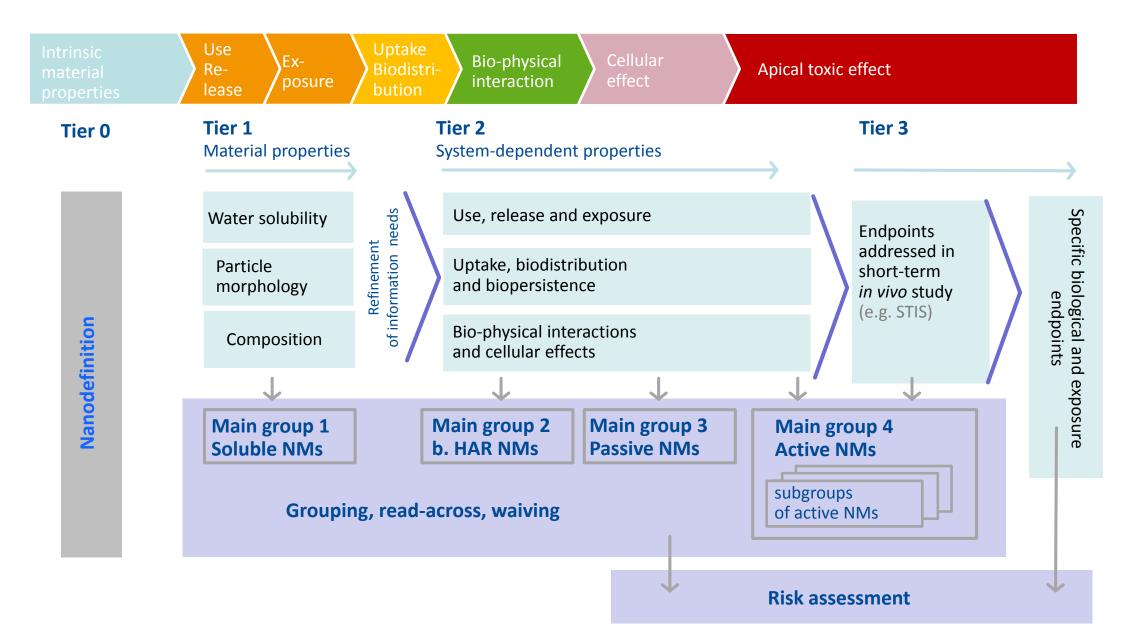
SiO₂.naked, **graphene** nanostructured calcium silicate hydrate seeds

Adverse effects observed at approx. 0.5 mg/m³

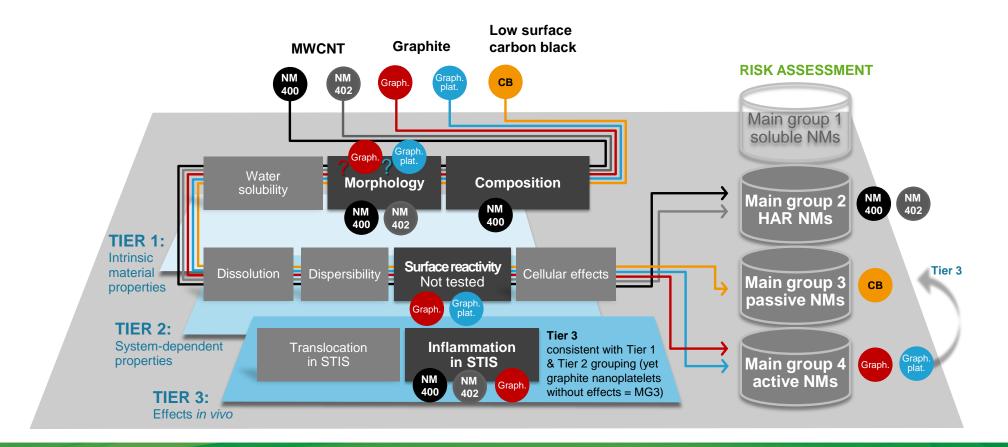

nano-CeO₂, AI doped nano-CeO₂, coated nano-ZnO, coated nano-TiO₂ uncoated nano-TiO2

NOAEC levels < 0.5 mg/m³ and effects progressive

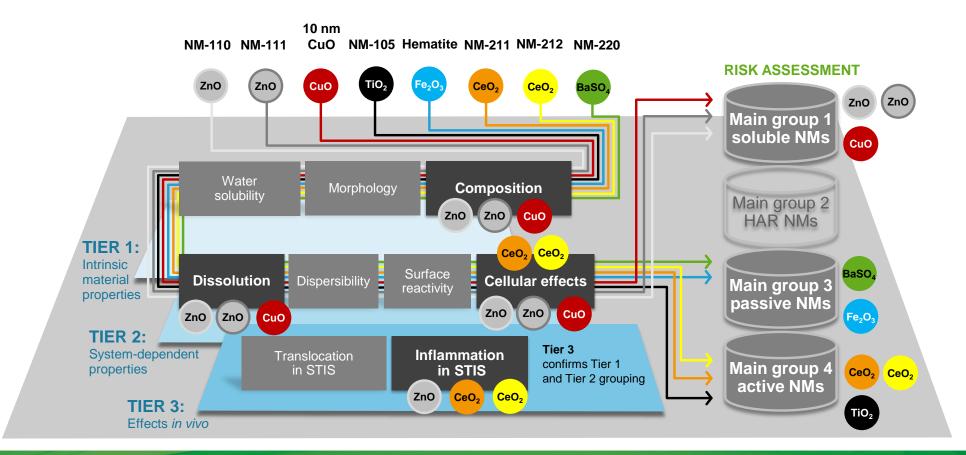
MWCNT, quartz



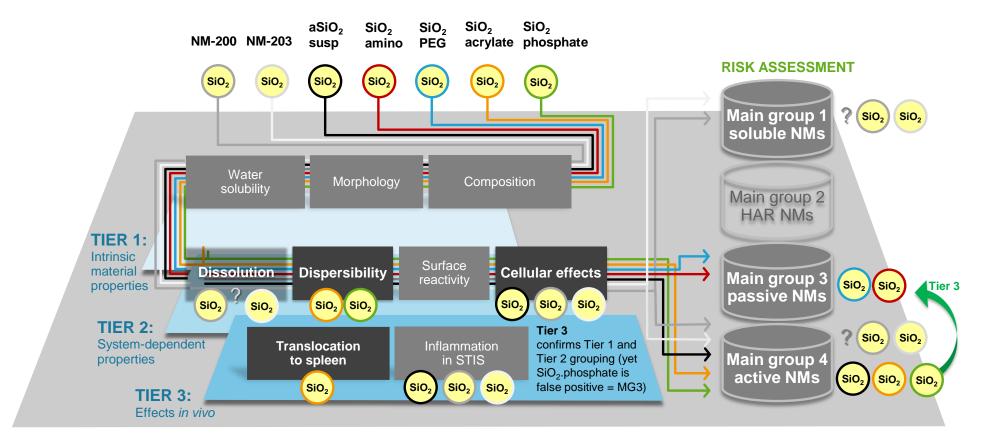
The nanomaterial's life cycle and biological pathway



Decision-making framework

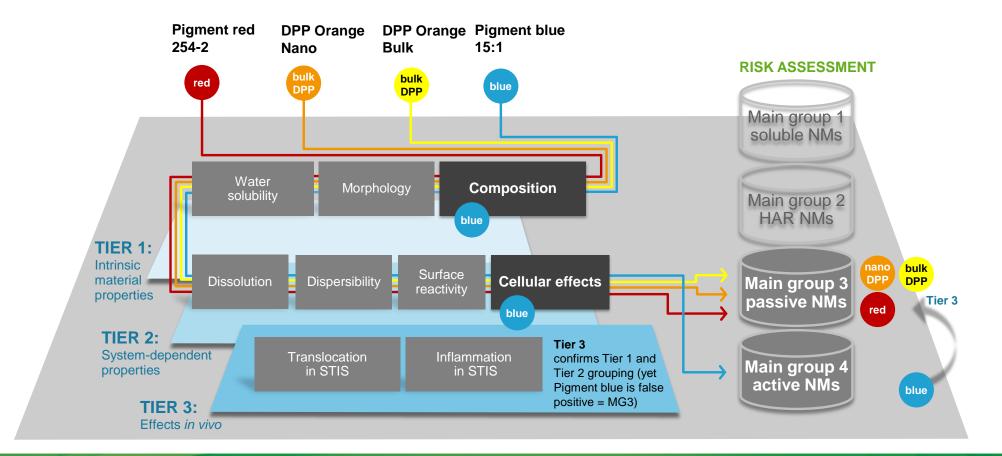


Application of the DF4nanoGrouping: Case study 1 'carbonaceous NMs Arts *et al.* (in preparation)



Application of the DF4nanoGrouping: Case study 2 'metal oxides and sulphates'

Arts *et al.* (in preparation)


Application of the DF4nanoGrouping: Case study 3 'amorphous silica NMs Arts *et al.* (in preparation)

Application of the DF4nanoGrouping: Case study 4 'organic pigments'

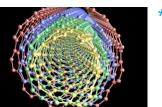
Arts *et al.* (in preparation)



Conclusion

- DF4nano uses a selected, limited number of intrinsic material properties and system-dependent properties for grouping.
- DF4nano proved useful for NM hazard assessment.
- 21 of 24 materials correctly assessed.
- 3 of 24 materials over-predicted (conservative)
- Scientific basis for hazard assessment

Decision-making framework, grouping, read-across and in silico models



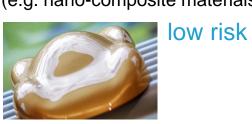
23

Knowing hazard and exposure enables the safe use of nanomaterials

Hazard potential **↑** High hazard, low exposure

High

*requires appropriate technical


measures for containment

*low risk

High hazard, high exposure \rightarrow Not acceptable

Low hazard, low exposure Suitable for all consumer products (e.g. nano-composite materials)

Low

Low hazard, high external exposure *requires testing of uptake and hazard

high risk

High

External exposure

Low

BASE We create chemistry